digital marketing, seo, google

Medindo a Capacidade do Processo

Conhecer a real capacidade do processo, para alguns profissionais da área fabril, ainda representa uma “certa” dificuldade devido à falta de compreensão de sua definição. Resolvi abordar este assunto de uma forma simples, espero poder contribuir.

Você não precisa fazer nada disto, a sobrevivência da sua organização não é obrigatória”
Por: Moisés Calandrin

Medindo a Capacidade do Processo – Edwards Deming

A verdadeira capacidade do processo só deve ser determinada após o mesmo ter sido otimizado e estabilizado.

  • Capacidade é a habilidade do processo em produzir produtos dentro dos limites de especificação.
  • A capacidade do processo é a sua própria variabilidade, depois que este foi otimizado e está sob controle.

Utilizam-se técnicas estatísticas, a fim de estudar a variabilidade do processo, comparando-a com as especificações (tolerâncias).

Diz-se que um processo é capaz quando o mesmo atende estatisticamente às especificações.

Os principais índices utilizados para obter a capacidade do processo são o Cp e o Cpk.

Os limites μ ± 3σ são conhecidos como limites naturais de tolerância.

LNST = μ + 3σ (limite natural superior de tolerância)

LNIS = μ – 3σ (limite natural inferior de tolerância)

O limite de 6σ sobre a distribuição de uma característica de qualidade do produto vem a ser a capacidade do produto, onde σ é o desvio padrão do processo otimizado e estável (sob controle).

 

 

Capacidade da produção = 6σ

Como o valor de σ é, em geral, desconhecido, para obter a capacidade do processo usa-se um estimador:

 

^σ = R bar ÷ d²

 

Onde d₂ é um valor que depende do tamanho da amostra (n ≤ 10) e em decorrência, encontra-se na tabela Anexo B.

Se n > 10 e foi o gráfico de controle , o estimado de σ é:

^σ =  Σ(X – Xbar)² ÷ (n-1)

 

Não existe uma relação matemática ou estatística entre limite de controle e limite de especificação. Os limites de controle são definidos em função da variabilidade do processo e medido pelo desvio padrão. Os limites de especificação são estabelecidos no projeto pelos engenheiros, pela administração ou pelo cliente.

A melhor forma de se verificar a adequação de um processo à necessidade da engenharia de produto é através do estudo de capacidade do processo ou da relação entre a capacidade do processo e a diferença entre os limites de especificação (tolerância do produto).

Esta relação é conhecida como índice de capacidade (Cp).

Cp = (LSE – LIE) ÷ (6σ)

 

onde:

LSE = limite superior de especificação.

LIS = limite inferior de especificação.

6σ = capacidade do processo.

A análise do índice de capacidade é muito útil na tomada de decisões sobre a adequação do processo às especificações. Uma regra prática para esta análise é descrita a seguir:

Processo Vermelho: (Cp < 1), a capacidade do processo é inadequada à tolerância exigida. Nesta situação, o ideal é realizar o trabalho com outro processo mais adequado às especificações. Não sendo possível mudar o processo, deve-se tentar diminuir a sua variabilidade. Por último, resta a possibilidade de se alterar as especificações do produto.

 

Processo Amarelo: (1 ≤ Cp ≤ 1,33), a capacidade do processo está em torno da diferença entre as especificações. O tratamento deve ser semelhante àquele dado ao processo vermelho. Neste caso, cartas de controle são muito úteis para manter o processo sob controle e evitar a produção de itens fora das especificações.

Processo Verde: (Cp > 1,33), a capacidade do processo é adequada à tolerância exigida. Se a capacidade do processo está entre 3/4 e 2/3 da tolerância, é aconselhável coletar amostras periódicas para acompanhamento do processo. Se a capacidade do processo é menor que metade da tolerância, não é preciso tomais maiores cuidados como o processo, pode-se dizer que o mesmo é excelente ou altamente confiável.

Na prática, nem sempre o processo está centrado na média, ou seja, pode-se chegar a conclusões erradas quanto a capacidade do processo. Se o processo não se encontrar centrado na média, Kane (1986) propôs a utilização do Índice de Performance (Cpk):

            Cpk: índice de capacidade nominal do processo, leva em consideração a dispersão do processo (curto prazo) e centragem do processo em relação aos limites de especificação.

 

Cpk:

Observações importantes:

  • Cp é sempre maior ou igual a Cpk.
  • Quando o processo está centralizado, ou seja, a sua média está bem no meio da especificação, então Cp = Cpk.
  • Sempre que Cpk < 1, há geração de produtos não-conformes.Tanto Cp como Cpk só têm resultados válidos se a distribuição dos valores individuais for normal.
  • No caso de especificações unilaterais, somente se utiliza o índice Cpk.

 

Relacionamento entre Cp e Cpk e PPM

Exemplo:

O peso líquido (em onças, oz) de um alvejante em pó deve ser monitorado pelas cartas de  usando amostras de tamanho n = 5. Dados para 20 amostras preliminares são os seguintes:

  1. Construa a carta de controle usando esses dados. O processo está sob controle estatístico?
  2. Estime a média e o desvio padrão do processo.
  3. O peso de enchimento parece seguir uma distribuição normal?
  4. Se as especificações são 16,2 ± 0,5 oz, quase as suas conclusões sobre a capacidade do processo?
  5. Qual o provável PPM de recipientes fora dos limites de especificação?

Com o auxílio do software Mintiab, temos:

 

Referência:

RAMOS, A. W. CEP para processos contínuos e em bateladas, 2000

SIQUEIRA, L.G.P. Controle estatístico do processo, São Paulo: Pioneira, 1997. 129 p.

TOLEDO, J.C. Introdução ao CEP- Controle Estatístico de ProcessoDEP- UFSCar

VIEIRA, S. Estatística para a qualidade. Rio e Janeiro: Campus. 1999. 198 p.

MONTGOMERY, D.C. INTRODUÇÃO AO CONTROLE ESTATÍSTICO DA QUALIDADE. Rio de Janeiro, LTC / GEN, 2004.